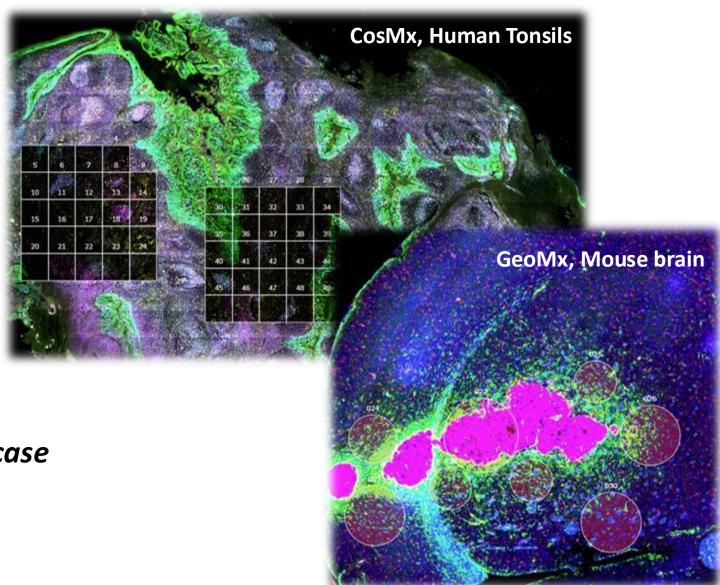

Advancing Spatial Biology

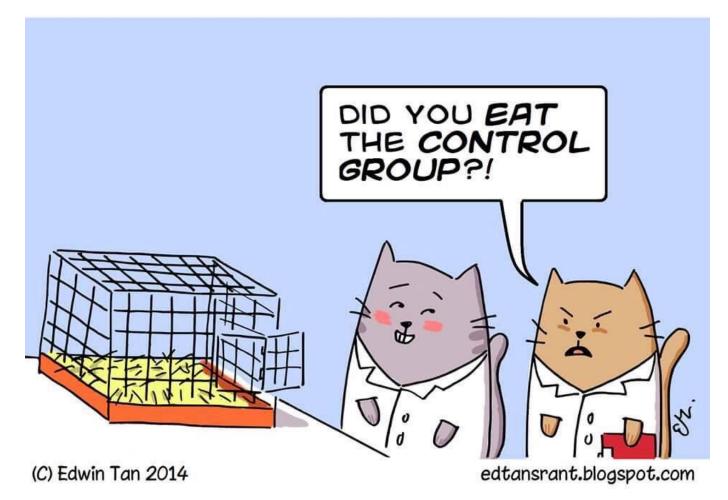
Spatial Transcriptomics and ASOC Service Overview


07 NOV 2024, Spatial Omics Seminar

Bo Young Ahn, PhD
Applied Spatial Omics Centre (ASOC)
Cumming School of Medicine, University of Calgary

Agenda

- Who We Are
- **How We Help**
- Why Work with Us
- What is Spatial Omics
- How it works *GeoMx project case*



Centre for **Advanced**

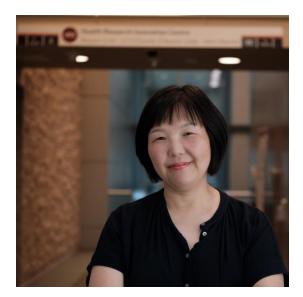
CAT, Centre for Advanced Technologies

WHY CATS MAKE BAD SCIENTISTS

CAT, Centre for Advanced Technologies

Applied Spatial Omics Centre (ASOC)

Centre for Health Genomics and Informatics (CHGI)



ASOC, Applied Spatial Omics Centre

ASOC provides comprehensive services in histology, spatial transcriptomics, and

bioinformatic analysis, empowering researchers with the tools and expertise needed to drive innovations in biomedical research

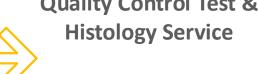
Our Team member

Bo Young Ahn, PhDSenior Spatial Biology Specialist

Shiying Liu, PhD
Cell & Molecular Biology Specialist
With CGE

Kim Goring, MScHistology Specialist

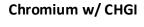
Heewon Seo, PhD
Lead Bioinformatician



End-to-end Spatial Omics Service

Project Initiation & Experimental Design

Quality Control Test &

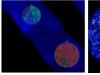


Visium CytAssist

10X Genomics

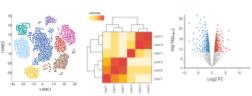
- Comprehensive RNA & DNA Purification for Genomic Research
- Core Histology Services for Spatial Transcriptomics
- Hands-On Histology Training for Trainees Launching Soon!

Xenium


CosMx

GeoMx

DATA Processing & Analysis



- Custom Bioinformatics **Analysis Services**
- One-on-One Workshops in Spatial Data Analysis

Nanostring

Obstacles of Spatial Omics Analysis for individual lab

High cost, expertise, and/or need for specialized equipment

• A wide range of technologies to choose from in situ hybridization, in situ sequencing, and in situ capturing technologies etc

• Tissue of interest may require additional optimization

Centre for

Why Work with Us

Affordable

- Centralization ensures top-tier equipment access

Expertise

- Specialized team dedicated to research support
- Seasoned staff with continuous, open
 communication channels
- End-to-end service

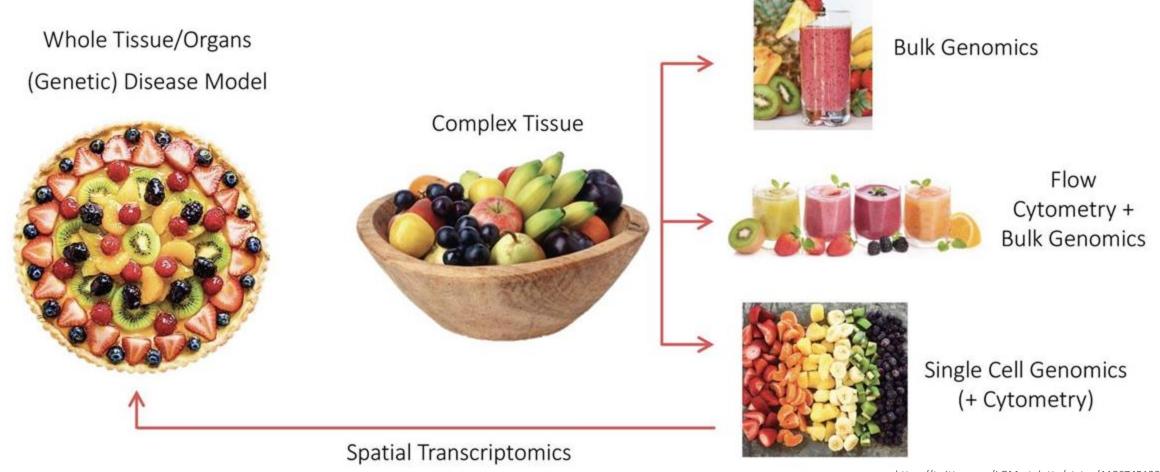
Adaptable

- Customizable options and rates
- Diverse services for all tech needs
- Open to faculty and external clients

Free consultation!!

https://asoc.ucalgary.ca/

ASOC@ucalgry.ca

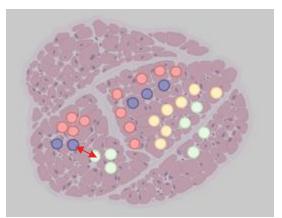

What is Spatial Omics?

- Spatial Omics includes:
 - Spatial Transcriptomics
 - Spatial Proteomics

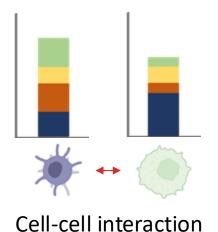
 Spatial Omics is an overarching term for all methods that assign transcriptomics/proteomics data to the original location within the tissue.

Spatial Transcriptomics in Layman's Term

Genomics Research is Evolving from Bulk to Single Cell to Spatial



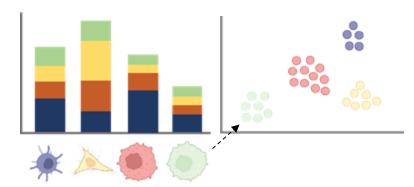
https://twitter.com/LGMartelotto/status/1186745128615985152



Advances in Spatial Transcriptomics

Spatial Transcriptomics

Map the locations of cell types across a tissue


Property	Bulk	Single-cell	Spatial
Cell-type	Х	0	Ο
Location	X	X	O

Bulk Genomics

Average gene expression

Cell-type gene expression

Cell-type clusters

History of Spatial Transcriptomics

Spatial transcriptomics isn't brand new;

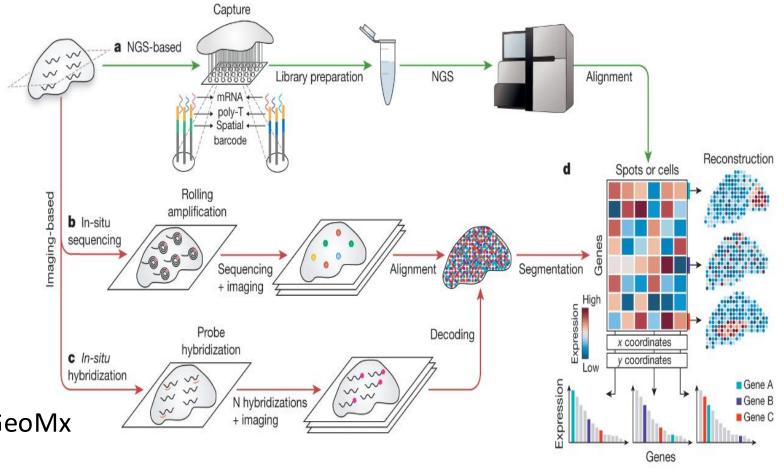
It began in the 1970s but could only handle one gene at a time.

Dr. Gall lab reported a DNA-DNA hybridization method (*in situ* hybridization) using radioactive labeling for detecting the cellular localization of DNA sequences (*PNAS* 1969).

• The recent rise in spatial transcriptomics comes from the ability to measure hundreds, thousands, or even whole transcriptome at once!

Joseph G Gall (1928 – Sept 12, 2024)

Four Main Key Spatial Transcriptomics Technologies


Imaging-based method:

Fluorescence in situ hybridization ex, MERFISH, CosMx
in situ sequencing – ex, Xenium

Sequencing-based method:

in situ capture – ex, Visium

Region of interest (ROI)-based – ex, GeoMx

Rao et al., Nature (2021)

How to Choose the Right Spatial Transcriptomics Platform

What is the goal of the spatial experiment?

- 1. What species are the samples from?
- 2. How are the tissue samples prepared?
- 3. What is the stage of the project?
- 4. For the experiment, how many control and test samples will be included?
- 5. How many sections of each sample type can fit onto a slide with the chosen platform

Hypothesis Generating Profile many genes

Determine larger area

GeoMx

Hypothesis Validating

Profile fewer genes Higher resolution

CosMx

Centre for

Project - Drug Repurposing in Breast Mets

Aim - Evaluation of Drug X and Z Efficacy in Treating Brain Metastases of Breast Cancer in a Mouse Model and Profiling Immune Response Pre- and Post-Treatment

-> Mouse WTA with the immune cell markers

- 1. What species are the samples from? Human tumor xenograft mouse brain
- 2. How are the tissue samples prepared? FFPE
- 3. What is the stage of the project? Hypothesis generating -> GeoMx
- 4. For the experiment, how many control and test samples will be included?

 Model/Treatment, n=3: drug X, drug Z and control (no treatment)
- 5. How many sections of each sample type can fit onto a slide with the chosen platform

The mouse brains from 3 models would fit onto one GeoMx slide tissue area -> GeoMx

Why GeoMx - A Cost-Focused Perspective

95 AOIs from 32 ROIs -> 95 samples, Total cost - ~ \$8,000 (Bioinformatic analysis costs not included)

Cost Breakdown for 95 Samples:

- •Spatial Transcriptomics (ST) with GeoMx: Approximately \$8,000 for 95 samples, provides spatial resolution within tissue.
- •Bulk RNA Sequencing: Costs range from \$50 to \$100 per sample, bringing the total for 95 samples to around \$4,750–\$9,500, measures average gene expression across tissue without spatial or cell-specific detail.
- •Single-Cell Sequencing: Generally ranges from \$500 to \$1,000 per sample, totaling approximately \$47,500–\$95,000 for 95 samples, captures gene expression at single-cell resolution but lacks spatial context.

Estimated costs for reference only. Actual prices may vary.

Acknowledgements

Cumming School of Medicine

Centre for Advanced Technologies (CAT) Team

Angela Krawetz, Dr. Simon Hirota, Dr. Roman Krawetz

CGE CHGI

Dr. Derrick Rancourt Shelly Wegener

Cameron Fielding Dr. Paul Gordon

Dr. Ken Ito Jene Weatherhead

Dr. Yaping Yu Juli Kriel

Dr. Shiying Liu Rebecca Walchyshyn

Dr. Robyn Flynn

Faculty of Veterinary Medicine

HBI Microscope facility

Alberta Precision Lab

Young Ou

Special thanks to Dr. Thomas Klonisch

Arnie Charbonneau Cancer Institute

Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases

McCaig Institute for Bone and Joint Health

Hotchkiss Brain Institute

Precision Oncology and Experimental Therapeutics (POET) Group

